Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1242531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554323

RESUMO

Immune responses highly depend on the effective trafficking of immune cells into and within secondary lymphoid organs (SLOs). Atypical chemokine receptors (ACKRs) scavenge chemokines to eliminate them from the extracellular space, thereby generating gradients that guide leukocytes. In contrast to canonical chemokine receptors, ACKRs do not induce classical intracellular signaling that results in cell migration. Recently, the closest relative of ACKR3, GPR182, has been partially deorphanized as a potential novel ACKR. We confirm and extend previous studies by identifying further ligands that classify GPR182 as a broadly scavenging chemokine receptor. We validate the "atypical" nature of the receptor, wherein canonical G-protein-dependent intracellular signaling is not activated following ligand stimulation. However, ß-arrestins are required for ligand-independent internalization and chemokine scavenging whereas the C-terminus is in part dispensable. In the absence of GPR182 in vivo, we observed elevated chemokine levels in the serum but also in SLO interstitium. We also reveal that CXCL13 and CCL28, which do not bind any other ACKR, are bound and efficiently scavenged by GPR182. Moreover, we found a cooperative relationship between GPR182 and ACKR3 in regulating serum CXCL12 levels, and between GPR182 and ACKR4 in controlling CCL20 levels. Furthermore, we unveil a new phenotype in GPR182-KO mice, in which we observed a reduced marginal zone (MZ), both in size and in cellularity, and thus in the T-independent antibody response. Taken together, we and others have unveiled a novel, broadly scavenging chemokine receptor, which we propose should be named ACKR5.


Assuntos
Quimiocinas CC , Receptores de Quimiocinas , Transdução de Sinais , Animais , Camundongos , Ligantes , Receptores de Quimiocinas/metabolismo
2.
PLoS Biol ; 21(5): e3002111, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37159457

RESUMO

Atypical chemokine receptors (ACKRs) scavenge chemokines and can contribute to gradient formation by binding, internalizing, and delivering chemokines for lysosomal degradation. ACKRs do not couple to G-proteins and fail to induce typical signaling induced by chemokine receptors. ACKR3, which binds and scavenges CXCL12 and CXCL11, is known to be expressed in vascular endothelium, where it has immediate access to circulating chemokines. ACKR4, which binds and scavenges CCL19, CCL20, CCL21, CCL22, and CCL25, has also been detected in lymphatic and blood vessels of secondary lymphoid organs, where it clears chemokines to facilitate cell migration. Recently, GPR182, a novel ACKR-like scavenger receptor, has been identified and partially deorphanized. Multiple studies point towards the potential coexpression of these 3 ACKRs, which all interact with homeostatic chemokines, in defined cellular microenvironments of several organs. However, an extensive map of ACKR3, ACKR4, and GPR182 expression in mice has been missing. In order to reliably detect ACKR expression and coexpression, in the absence of specific anti-ACKR antibodies, we generated fluorescent reporter mice, ACKR3GFP/+, ACKR4GFP/+, GPR182mCherry/+, and engineered fluorescently labeled ACKR-selective chimeric chemokines for in vivo uptake. Our study on young healthy mice revealed unique and common expression patterns of ACKRs in primary and secondary lymphoid organs, small intestine, colon, liver, and kidney. Furthermore, using chimeric chemokines, we were able to detect distinct zonal expression and activity of ACKR4 and GPR182 in the liver, which suggests their cooperative relationship. This study provides a broad comparative view and a solid stepping stone for future functional explorations of ACKRs based on the microanatomical localization and distinct and cooperative roles of these powerful chemokine scavengers.


Assuntos
Transdução de Sinais , Animais , Camundongos , Quimiocina CCL19/metabolismo , Movimento Celular
3.
Nat Immunol ; 24(4): 604-611, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36879067

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes. Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Autoanticorpos , Síndrome Pós-COVID-19 Aguda , Quimiocinas
4.
bioRxiv ; 2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35664993

RESUMO

Infection by SARS-CoV-2 leads to diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse COVID-19 outcomes. Instead, we discovered that antibodies against specific chemokines are omnipresent after COVID-19, associated with favorable disease, and predictive of lack of long COVID symptoms at one year post infection. Anti-chemokine antibodies are present also in HIV-1 infection and autoimmune disorders, but they target different chemokines than those in COVID-19. Monoclonal antibodies derived from COVID- 19 convalescents that bind to the chemokine N-loop impair cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising anti-chemokine antibodies associated with favorable COVID-19 may be beneficial by modulating the inflammatory response and thus bear therapeutic potential. One-Sentence Summary: Naturally arising anti-chemokine antibodies associate with favorable COVID-19 and predict lack of long COVID.

5.
Front Immunol ; 13: 1067885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713377

RESUMO

Chemotaxis is an essential physiological process, often harnessed by tumors for metastasis. CXCR4, its ligand CXCL12 and the atypical receptor ACKR3 are overexpressed in many human cancers. Interfering with this axis by ACKR3 deletion impairs lymphoma cell migration towards CXCL12. Here, we propose a model of how ACKR3 controls the migration of the diffused large B-cell lymphoma VAL cells in vitro and in vivo in response to CXCL12. VAL cells expressing full-length ACKR3, but not a truncated version missing the C-terminus, can support the migration of VAL cells lacking ACKR3 (VAL-ko) when allowed to migrate together. This migration of VAL-ko cells is pertussis toxin-sensitive suggesting the involvement of a Gi-protein coupled receptor. RNAseq analysis indicate the expression of chemotaxis-mediating LTB4 receptors in VAL cells. We found that LTB4 acts synergistically with CXCL12 in stimulating the migration of VAL cells. Pharmacologic or genetic inhibition of BLT1R markedly reduces chemotaxis towards CXCL12 suggesting that LTB4 enhances in a contact-independent manner the migration of lymphoma cells. The results unveil a novel mechanism of cell-to-cell-induced migration of lymphoma.


Assuntos
Leucotrieno B4 , Linfoma , Receptores CXCR , Humanos , Movimento Celular , Quimiocina CXCL12/metabolismo , Leucotrieno B4/metabolismo , Linfócitos/metabolismo , Receptores CXCR4/genética , Transdução de Sinais , Receptores CXCR/metabolismo
6.
Cell Rep ; 32(5): 107951, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755592

RESUMO

The marginal zone (MZ) contributes to the highly organized spleen microarchitecture. We show that expression of atypical chemokine receptor 3 (ACKR3) defines two equal-sized populations of mouse MZ B cells (MZBs). ACKR3 is required for development of a functional MZ and for positioning of MZBs. Deletion of ACKR3 on B cells distorts the MZ, and MZBs fail to deliver antigens to follicles, reducing humoral responses. Reconstitution of MZ-deficient CD19ko mice shows that ACKR3- MZBs can differentiate into ACKR3+ MZBs, but not vice versa. The lack of a MZ is rescued by adoptive transfer of ACKR3-sufficient, and less by ACKR3-deficient, follicular B cells (FoBs); hence, ACKR3 expression is crucial for establishment of the MZ. The inability of CD19ko mice to respond to T-independent antigen is rescued when ACKR3-proficient, but not ACKR3-deficient, FoBs are transferred. Accordingly, ACKR3-deficient FoBs are able to reconstitute the MZ if the niche is pre-established by ACKR3-proficient MZBs.


Assuntos
Linfócitos B/metabolismo , Receptores CXCR/metabolismo , Transferência Adotiva , Animais , Antígenos/metabolismo , Antígenos CD19/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/metabolismo
7.
J Leukoc Biol ; 107(6): 1137-1154, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32533638

RESUMO

The chemokine CCL20 is broadly produced by endothelial cells in the liver, the lung, in lymph nodes and mucosal lymphoid tissues, and recruits CCR6 expressing leukocytes, particularly dendritic cells, mature B cells, and subpopulations of T cells. How CCL20 is systemically scavenged is currently unknown. Here, we identify that fluorescently labeled human and mouse CCL20 are efficiently taken-up by the atypical chemokine receptor ACKR4. CCL20 shares ACKR4 with the homeostatic chemokines CCL19, CCL21, and CCL25, although with a lower affinity. We demonstrate that all 4 human chemokines recruit ß-arrestin1 and ß-arrestin2 to human ACKR4. Similarly, mouse CCL19, CCL21, and CCL25 equally activate the human receptor. Interestingly, at the same chemokine concentration, mouse CCL20 did not recruit ß-arrestins to human ACKR4. Further cross-species analysis suggests that human ACKR4 preferentially takes-up human CCL20, whereas mouse ACKR4 similarly internalizes mouse and human CCL20. Furthermore, we engineered a fluorescently labeled chimeric chemokine consisting of the N-terminus of mouse CCL25 and the body of mouse CCL19, termed CCL25_19, which interacts with and is taken-up by human and mouse ACKR4.


Assuntos
Quimiocina CCL19/metabolismo , Quimiocina CCL20/metabolismo , Quimiocina CCL21/metabolismo , Quimiocinas CC/metabolismo , Receptores CCR/metabolismo , beta-Arrestinas/genética , Sequência de Aminoácidos , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Sítios de Ligação , Linhagem Celular , Quimiocina CCL19/química , Quimiocina CCL19/genética , Quimiocina CCL20/química , Quimiocina CCL20/genética , Quimiocina CCL21/química , Quimiocina CCL21/genética , Quimiocinas CC/química , Quimiocinas CC/genética , Células HEK293 , Células HeLa , Humanos , Ligantes , Camundongos , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Receptores CCR/química , Receptores CCR/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transfecção , beta-Arrestinas/metabolismo
8.
J Leukoc Biol ; 104(2): 391-400, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29601107

RESUMO

Chemokines, small chemotactic cytokines, orchestrate cell migration by binding to their cognate chemokine receptors. While chemokine-mediated stimulation of typical G-protein-coupled chemokine receptors leads to cell migration, binding of chemokines to atypical chemokine receptors (ACKRs) does not induce canonical signaling. ACKRs are considered important chemokine scavengers, that can create gradients which help direct cells to sites of inflammation or to their immunological niches. Synthetic chemokines have been used in the past to study and decode chemokine-receptor interactions. Characterizing specific chemokine-ACKRs interactions is challenging because the chemokines bind multiple receptors; for example, the ACKR3 ligands CXCL12 and CXCL11 bind to the canonical receptors CXCR4 and CXCR3, respectively. Here, we present the engineering of a chemokine-like chimera, which selectively binds to ACKR3. The addition of a ybbR13 tag at the C-terminus allows site specific enzymatic labeling with a plethora of fluorescent dyes. The chimera is composed of the N-terminus of CXCL11 and the main body and C-terminus of CXCL12 and selectively interacts with ACKR3 with high affinity, while not interfering with binding of CXCL11 and CXCL12 to their cognate receptors. We further provide evidence that the chimera can be used to study ACKR3 function in vivo.


Assuntos
Quimiocina CXCL11/metabolismo , Quimiocina CXCL12/metabolismo , Receptores CXCR/metabolismo , Animais , Quimera , Humanos , Ligantes , Camundongos , Ligação Proteica
9.
Oncotarget ; 8(49): 85068-85084, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156704

RESUMO

Diffuse large B cell lymphoma (DLBCL) is the most frequent lymphoma accounting for more than the 30% of the cases. Involvement of extranodal sites, such as bone marrow and central nervous system, is associated with poor prognosis. A contribution of the chemokine system in these processes is assumed as it is known as a critical regulator of the metastatic process in cancer. The atypical chemokine receptor 3 (ACKR3), which does not couple to G-proteins and does not mediate cell migration, acts as a scavenger for CXCL11 and CXCL12, interfering with the tumor homing CXCL12/CXCR4 axis. Here, functional expression of ACKR3 in DLBCL cells was necessary for colonization of the draining lymph node in an in vivo subcutaneous lymphoma model. Moreover, in a disseminated in vivo lymphoma model, ACKR3 expression was required for bone marrow and brain invasion and local tumor growth. The present data unveil ACKR3 as potential therapeutic target for the control of tumor dissemination in DLBCL.

10.
FASEB J ; 31(7): 3084-3097, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28360196

RESUMO

The chemokine receptor, CXC chemokine receptor 4 (CXCR4), is selective for CXC chemokine ligand 12 (CXCL12), is broadly expressed in blood and tissue cells, and is essential during embryogenesis and hematopoiesis. CXCL14 is a homeostatic chemokine with unknown receptor selectivity and preferential expression in peripheral tissues. Here, we demonstrate that CXCL14 synergized with CXCL12 in the induction of chemokine responses in primary human lymphoid cells and cell lines that express CXCR4. Combining subactive concentrations of CXCL12 with 100-300 nM CXCL14 resulted in chemotaxis responses that exceeded maximal responses that were obtained with CXCL12 alone. CXCL14 did not activate CXCR4-expressing cells (i.e., failed to trigger chemotaxis and Ca2+ mobilization, as well as signaling via ERK1/2 and the small GTPase Rac1); however, CXCL14 bound to CXCR4 with high affinity, induced redistribution of cell-surface CXCR4, and enhanced HIV-1 infection by >3-fold. We postulate that CXCL14 is a positive allosteric modulator of CXCR4 that enhances the potency of CXCR4 ligands. Our findings provide new insights that will inform the development of novel therapeutics that target CXCR4 in a range of diseases, including cancer, autoimmunity, and HIV.-Collins, P. J., McCully, M. L., Martínez-Muñoz, L., Santiago, C., Wheeldon, J., Caucheteux, S., Thelen, S., Cecchinato, V., Laufer, J. M., Purvanov, V., Monneau, Y. R., Lortat-Jacob, H., Legler, D. F., Uguccioni, M., Thelen, M., Piguet, V., Mellado, M., Moser, B. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4.


Assuntos
Quimiocina CXCL12/metabolismo , Quimiocinas CXC/metabolismo , Regulação da Expressão Gênica/fisiologia , Leucócitos Mononucleares/metabolismo , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocinas CXC/genética , Quimiotaxia , HIV-1/fisiologia , Humanos , Ligação Proteica , Conformação Proteica , RNA Mensageiro , Receptores CXCR4/genética , Transdução de Sinais
11.
Sci Signal ; 10(471)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325822

RESUMO

Chemokines orchestrate cell migration for development, immune surveillance, and disease by binding to cell surface heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). The array of interactions between the nearly 50 chemokines and their 20 GPCR targets generates an extensive signaling network to which promiscuity and biased agonism add further complexity. The receptor CXCR4 recognizes both monomeric and dimeric forms of the chemokine CXCL12, which is a distinct example of ligand bias in the chemokine family. We demonstrated that a constitutively monomeric CXCL12 variant reproduced the G protein-dependent and ß-arrestin-dependent responses that are associated with normal CXCR4 signaling and lead to cell migration. In addition, monomeric CXCL12 made specific contacts with CXCR4 that are not present in the structure of the receptor in complex with a dimeric form of CXCL12, a biased agonist that stimulates only G protein-dependent signaling. We produced an experimentally validated model of an agonist-bound chemokine receptor that merged a nuclear magnetic resonance-based structure of monomeric CXCL12 bound to the amino terminus of CXCR4 with a crystal structure of the transmembrane domains of CXCR4. The large CXCL12:CXCR4 protein-protein interface revealed by this structure identified previously uncharacterized functional interactions that fall outside of the classical "two-site model" for chemokine-receptor recognition. Our model suggests a mechanistic hypothesis for how interactions on the extracellular face of the receptor may stimulate the conformational changes required for chemokine receptor-mediated signal transduction.


Assuntos
Quimiocina CXCL12/química , Multimerização Proteica , Receptores CXCR4/química , Transdução de Sinais , Sequência de Aminoácidos , Linhagem Celular Tumoral , Movimento Celular/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Ligação Proteica , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo
12.
J Leukoc Biol ; 99(6): 971-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26609049

RESUMO

Chemokine receptors are key regulators of leukocyte trafficking but also have an important role in development, tumor growth, and metastasis. Among the chemokine receptors, CXCR4 is the only one that leads to perinatal death when genetically ablated in mice, indicating a more-widespread function in development. To identify pathways that are activated downstream of CXCR4, a solubilization protocol was elaborated, which allows for the isolation of the endogenous receptor from human cells in its near-native conformation. Solubilized CXCR4 is recognized by the conformation-sensitive monoclonal antibody 12G5 and retains the ability to bind CXCL12 in solution, which was abolished in the presence of receptor antagonists. Mass spectrometry of CXCR4 immunoprecipitates revealed a specific interaction with the pentameric eukaryotic translation initiation factor 2B. The observation that the addition of CXCL12 leads to the dissociation of eukaryotic translation initiation factor 2B from CXCR4 suggests that stimulation of the receptor may trigger the local protein synthesis required for efficient cell movement.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Cromatografia Líquida , Fator de Iniciação 2B em Eucariotos/química , Humanos , Imunoprecipitação , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Solubilidade , Espectrometria de Massas em Tandem
13.
PLoS One ; 7(5): e37208, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615942

RESUMO

BACKGROUND: Leukocyte migration is essential for effective host defense against invading pathogens and during immune homeostasis. A hallmark of the regulation of this process is the presentation of chemokines in gradients stimulating leukocyte chemotaxis via cognate chemokine receptors. For efficient migration, receptor responsiveness must be maintained whilst the cells crawl on cell surfaces or on matrices along the attracting gradient towards increasing concentrations of agonist. On the other hand agonist-induced desensitization and internalization is a general paradigm for chemokine receptors which is inconsistent with the prolonged migratory capacity. METHODOLOGY/PRINCIPAL FINDINGS: Chemotaxis of monocytes was monitored in response to fluorescent CCL2-mCherry by time-lapse video microscopy. Uptake of the fluorescent agonist was used as indirect measure to follow the endogenous receptor CCR2 expressed on primary human monocytes. During chemotaxis CCL2-mCherry becomes endocytosed as cargo of CCR2, however, the internalization of CCR2 is not accompanied by reduced responsiveness of the cells due to desensitization. CONCLUSIONS/SIGNIFICANCE: During chemotaxis CCR2 expressed on monocytes internalizes with the bound chemoattractant, but cycles rapidly back to the plasma membrane to maintain high responsiveness. Moreover, following relocation of the source of attractant, monocytes can rapidly reverse their polarization axis organizing a new leading edge along the newly formed gradient, suggesting a uniform distribution of highly receptive CCR2 on the plasma membrane. The present observations further indicate that during chemotaxis CCR2 acts as scavenger consuming the chemokine forming the attracting cue.


Assuntos
Quimiocina CCL2/metabolismo , Quimiotaxia de Leucócito/fisiologia , Receptores CCR2/fisiologia , Movimento Celular , Polaridade Celular , Quimiocina CCL2/agonistas , Humanos , Proteínas Luminescentes , Monócitos/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo
14.
Proteomics ; 12(12): 1938-48, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22623068

RESUMO

PTMs of extracellular domains of membrane proteins can influence antibody binding and give rise to ambivalent results. Best proof of protein expression is the use of complementary methods to provide unequivocal evidence. CXCR7, a member of the atypical chemokine receptor family, mainly functions as scavenger for the chemokines CXCL12 and CXCL11. The expression of CXCR7 on nonhematopoietic cells and neoplasms is widely accepted, however, its expression on leukocytes was recently challenged. To solve the dissent, we thoroughly analyzed the expression of CXCR7 on human B cells. We validated the efficiency of different epitope-specific monoclonal antibodies to detect CXCR7 on transfected cells and primary human B cells. The specificity of the used antibodies was further confirmed by an experimentally independent double labeling approach. Examination of CXCR7-dependent scavenging of fluorescent-labeled CXCL12 revealed functional expression of the receptor on human B cells. Moreover, real-time PCR analysis of CXCR7 mRNA showed the presence of transcripts in human leukocytes. Finally, two CXCR7-specific peptides were identified by MS in immunoprecipitates from primary human B cells. Thus, we present a strategy based on combined proteomic and functional approaches that can be used to solve dissents on protein expression, i.e. demonstrating the expression of CXCR7 on human leukocytes.


Assuntos
Linfócitos B/metabolismo , Proteômica/métodos , Receptores CXCR/biossíntese , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Linfócitos B/química , Cães , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Espectrometria de Massas , Tonsila Palatina/citologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR/genética , Receptores CXCR/metabolismo , Transfecção
15.
Biochem J ; 443(1): 173-83, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22242915

RESUMO

P-Rex1 is a GEF (guanine-nucleotide-exchange factor) for the small G-protein Rac that is activated by PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and Gßγ subunits and inhibited by PKA (protein kinase A). In the present study we show that PP1α (protein phosphatase 1α) binds P-Rex1 through an RVxF-type docking motif. PP1α activates P-Rex1 directly in vitro, both independently of and additively to PIP3 and Gßγ. PP1α also substantially activates P-Rex1 in vivo, both in basal and PDGF (platelet-derived growth factor)- or LPA (lysophosphatidic acid)-stimulated cells. The phosphatase activity of PP1α is required for P-Rex1 activation. PP1ß, a close homologue of PP1α, is also able to activate P-Rex1, but less effectively. PP1α stimulates P-Rex1-mediated Rac-dependent changes in endothelial cell morphology. MS analysis of wild-type P-Rex1 and a PP1α-binding-deficient mutant revealed that endogenous PP1α dephosphorylates P-Rex1 on at least three residues, Ser834, Ser1001 and Ser1165. Site-directed mutagenesis of Ser1165 to alanine caused activation of P-Rex1 to a similar degree as did PP1α, confirming Ser1165 as a dephosphorylation site important in regulating P-Rex1 Rac-GEF activity. In summary, we have identified a novel mechanism for direct activation of P-Rex1 through PP1α-dependent dephosphorylation.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Proteína Fosfatase 1/química , Motivos de Aminoácidos , Animais , Aorta/citologia , Forma Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Fosforilação , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Ligação Proteica , Proteína Fosfatase 1/metabolismo , Estrutura Terciária de Proteína , Coelhos , Suínos , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
Development ; 138(14): 2909-14, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21693511

RESUMO

The active migration of primordial germ cells (PGCs) from their site of specification towards their target is a valuable model for investigating directed cell migration within the complex environment of the developing embryo. In several vertebrates, PGC migration is guided by Cxcl12, a member of the chemokine superfamily. Interestingly, two distinct Cxcl12 paralogs are expressed in zebrafish embryos and contribute to the chemotattractive landscape. Although this offers versatility in the use of chemokine signals, it also requires a mechanism through which migrating cells prioritize the relevant cues that they encounter. Here, we show that PGCs respond preferentially to one of the paralogs and define the molecular basis for this biased behavior. We find that a single amino acid exchange switches the relative affinity of the Cxcl12 ligands for one of the duplicated Cxcr4 receptors, thereby determining the functional specialization of each chemokine that elicits a distinct function in a distinct process. This scenario represents an example of protein subfunctionalization--the specialization of two gene copies to perform complementary functions following gene duplication--which in this case is based on receptor-ligand interaction. Such specialization increases the complexity and flexibility of chemokine signaling in controlling concurrent developmental processes.


Assuntos
Movimento Celular/fisiologia , Quimiocina CXCL12/metabolismo , Evolução Molecular , Células Germinativas/fisiologia , Receptores CXCR4/metabolismo , Peixe-Zebra/embriologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Quimiocina CXCL12/genética , Técnicas de Silenciamento de Genes , Humanos , Hibridização In Situ , Microscopia Confocal , Espectrometria de Fluorescência , Peixe-Zebra/metabolismo
17.
PLoS One ; 5(4): e10159, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20419163

RESUMO

BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A)-adrenoceptor (alpha(2A)AR) display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET) of alpha(2A)AR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the attractant cue. Polarized monocytes, which display typical amoeboid like motility, can rapidly develop a new leading edge facing the highest chemoattractant concentration at any site of the plasma membrane, including the uropod. The process appears to be independent of PI 3-kinase activity.


Assuntos
Polaridade Celular , Quimiotaxia de Leucócito , Monócitos/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Monócitos/citologia , Receptores de Quimiocinas/análise , Transdução de Sinais
18.
J Neuroimmunol ; 198(1-2): 9-13, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18533280

RESUMO

CXCR7, formerly called RDC1 is a recently deorphanized G-protein coupled receptor which binds with high affinity the inflammatory and homing chemokines CXCL11/ITAC and CXCL12/SDF-1. Despite its phylogenetic relation and ligand binding properties CXCR7 does not mediate typical chemokine receptor responses such as leukocyte trafficking. Recent findings in zebrafish indicate that a critical activity of the receptor is scavenging of CXCL12 thereby generating guidance cues for CXCR4-dependent migration. The observations do not exclude the possibility that the receptor is capable of inducing signal transduction which is suggestive from studies of tumor growth and survival. The pronounced expression in central and peripheral nervous tissue and the absence of a brain phenotype in CXCR7(-/-) mice suggest a subtle activity of the receptor.


Assuntos
Quimiocina CXCL12/fisiologia , Receptores CXCR4/fisiologia , Receptores CXCR/fisiologia , Animais , Humanos
19.
J Biol Chem ; 282(41): 29967-76, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17698854

RESUMO

P-Rex1 is a guanine-nucleotide exchange factor (GEF) for the small GTPase Rac that is directly activated by the betagamma subunits of heterotrimeric G proteins and by the lipid second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), which is generated by phosphoinositide 3-kinase (PI3K). Gbetagamma subunits and PIP(3) are membrane-bound, whereas the intracellular localization of P-Rex1 in basal cells is cytosolic. Activation of PI3K alone is not sufficient to promote significant membrane translocation of P-Rex1. Here we investigated the subcellular localization of P-Rex1 by fractionation of Sf9 cells co-expressing P-Rex1 with Gbetagamma and/or PI3K. In basal, serum-starved cells, P-Rex1 was mainly cytosolic, but 7% of the total was present in the 117,000 x g membrane fraction. Co-expression of P-Rex1 with either Gbetagamma or PI3K caused only an insignificant increase in P-Rex1 membrane localization, whereas Gbetagamma and PI3K together synergistically caused a robust increase in membrane-localized P-Rex1 to 23% of the total. PI3K-driven P-Rex1 membrane recruitment was wortmannin-sensitive. The use of P-Rex1 mutants showed that the isolated Dbl homology/pleckstrin homology domain tandem of P-Rex1 is sufficient for synergistic Gbetagamma- and PI3K-driven membrane localization; that the enzymatic GEF activity of P-Rex1 is not required for membrane translocation; and that the other domains of P-Rex1 (DEP, PDZ, and IP4P) contribute to keeping the enzyme localized in the cytosol of basal cells. In vitro Rac2-GEF activity assays showed that membrane-derived purified P-Rex1 has a higher basal activity than cytosol-derived P-Rex1, but both can be further activated by PIP(3) and Gbetagamma subunits.


Assuntos
Membrana Celular/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Androstadienos/farmacologia , Animais , Citosol/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Insetos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Wortmanina
20.
J Immunol ; 172(11): 6715-22, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15153488

RESUMO

Antagonism of chemokines on chemokine receptors constitutes a new regulatory principle in inflammation. Eotaxin (CCL11), an agonist for CCR3 and an attractant of eosinophils, basophils, and Th2 lymphocytes, was shown to act as an antagonist for CCR2, which is widely expressed on leukocytes and is essential for inflammatory responses. In this report we provide direct evidence for a novel mechanism how chemokine receptor function can be arrested by endogenous ligands. We show that binding of eotaxin to CCR2 stimulates the mitogen-activated protein kinases extracellular signal-regulated kinase 1/2 (ERK1/2). Activation of the mitogen-activated protein kinase kinase 1/2-ERK pathway is indispensable for eotaxin-mediated attenuation of CCR2 function, as inhibition of ERK phosphorylation abolishes the arresting effect. ERK is also activated by CCR2 agonists, e.g., monocyte chemoattractant protein-1 (CCL2). However, the involved pathways are different, although in either case coupling of CCR2 to pertussis toxin-sensitive heterotrimeric G proteins is necessary. The results are in agreement with the view that CCR2 could assume different activation states depending on the ligand it encounters. With respect to actin polymerization and calcium mobilization, the different activation states lead to agonistic and antagonistic responses. It is conceivable that the intracellular signal transduction pathway that is activated by eotaxin could cause an attenuation of proinflammatory responses mediated by CCR2.


Assuntos
Quimiocinas CC/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Cálcio/metabolismo , Quimiocina CCL11 , Quimiocina CCL2/antagonistas & inibidores , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Receptores CCR2 , Receptores de Quimiocinas/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...